List 2

Limits of functions

35. Use the facts

$$
0<\ln (n) \quad \text { for all } n \in \mathbb{N} \text { with } n \geq 2
$$

and

$$
\ln (n)<\sqrt{n} \quad \text { for all } n \in \mathbb{N}
$$

to find $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}$. Diving the given inequalities by n (which is positive) gives $0<\frac{\ln (n)}{n}$ and $\frac{\ln (n)}{n}<\frac{\sqrt{n}}{n}$. Using basic algebra,

$$
\frac{\sqrt{n}}{n}=\frac{n^{1 / 2}}{n}=n^{-1 / 2}=\left(\frac{1}{n}\right)^{1 / 2}
$$

so $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n}=\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{1 / 2}=0$, and the Squeeze Theorem gives $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0$.
36. Use the Squeeze Theorem to determine the value of $\lim _{n \rightarrow \infty}\left(5^{n}+3^{n}\right)^{1 / n}$. 5 from

$$
\left(5^{n}\right)^{1 / n} \leq\left(5^{n}+3^{n}\right)^{1 / n} \leq\left(5^{n}+5^{n}\right)^{1 / n} .
$$

37. Evaluate $\lim _{n \rightarrow \infty} \frac{n^{3}}{3^{n}} .0$
38. Find the limits of these sequences and functions:
(a) $\lim _{n \rightarrow \infty} \frac{2^{n}+4^{n+1 / 2}}{4^{n}}=2$
(b) $\lim _{x \rightarrow \infty} \frac{2^{x}+4^{x+1 / 2}}{4^{x}}=2$
(c) $\lim _{n \rightarrow \infty} \frac{n^{3}+n^{-3}}{n^{2}+n^{-9}}=\infty$
(d) $\lim _{x \rightarrow \infty} \frac{x^{3}+x^{-3}}{x^{2}+x^{-9}}=\infty$
(e) $\lim _{n \rightarrow \infty} \sin (\pi n)=0$ because $\sin (\pi n)=0$ for all $n \in \mathbb{N}$
(f) $\lim _{x \rightarrow \infty} \sin (\pi x)$ doesn't exist
39. Calculate $\lim _{x \rightarrow \infty} 6^{x}=\infty$ and $\lim _{x \rightarrow-\infty} 6^{x}=0$.

If $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ both exist and are equal.
If $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ have different values, or at least one of them does not exist, then $\lim _{x \rightarrow a} f(x)$ does not exist.
40. Fill in the following table, then determine whether $\lim _{x \rightarrow-7} \frac{2 x+16}{1-x}$ exists. If it exists, what is its value?

$$
\begin{array}{l||l|l|l|l|l|l|l}
x & -7.1 & -7.08 & -7.003 & -7.0001 & -6.9999 & -6.998 & -6.96 \\
\hline f(x) & 0.22222 & 0.22772 & 0.24916 & 0.24997 & 0.25003 & 0.25056 & 0.26131
\end{array}
$$

$$
\lim _{x \rightarrow-7} \frac{2 x+16}{1-x}=0.25=\frac{1}{4}
$$

41. For the function $f(x)= \begin{cases}\sqrt{x} & \text { if } x \leq 4 \\ x^{2} & \text { if } x>4\end{cases}$
(a) Fill in the following table, then determine whether $\lim _{x \rightarrow 4^{-}} f(x)$ (also written $\lim _{x \nmid 4} f(x)$ or $\lim _{x \uparrow 4} f(x)$ in some books) exists. If it exists, what is its value?

$$
\begin{array}{l||l|l|l|l|}
x & 3.9 & 3.95 & 3.975 & 3.9999 \\
\hline f(x) & 1.9748 & 1.98746 & 1.99374 & 1.99997
\end{array}
$$

$\lim _{x \rightarrow 4^{-}} f(x)=5$
(b) Fill in the following table, then determine whether $\lim _{x \rightarrow 4^{+}} f(x)$ (also written $\lim _{x \searrow 4} f(x)$ or $\lim _{x \downarrow 4} f(x)$ in some books) exists. If it exists, what is its value?

x	4.5	4.25	4.1	4.001	4.00006
$f(x)$	20.25	18.0625	16.81	16.008	16.0048

$$
\lim _{x \rightarrow 4^{+}} f(x)=16
$$

(c) Does $\lim _{x \rightarrow 4} f(x)$ exist? If it exists, what is its value?

The limit does not exist because $\lim _{x \rightarrow 4^{-}} f(x) \neq \lim _{x \rightarrow 4^{+}} f(x)$.
42. For the function whose graph is shown below, give the following limits (if they exist) to the nearest 0.5.
(a) $\lim _{x \rightarrow 1^{-}} f(x) 2$
(b) $\lim _{x \rightarrow 1^{+}} f(x) 1$
(c) $\lim _{x \rightarrow 1} f(x)$ does not exist
(d) $\lim _{x \rightarrow 2} f(x) 1.5$ (or something similar)
(e) $\left.\lim _{x \rightarrow 3} f(x) \boxed{2(n o t ~ 3.5, ~ a l t h o u g h ~} f(3)=3.5\right)$
(f) $\lim _{x \rightarrow \infty} f(x) 3$

43. Determine whether $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$ exists. If it exists, what is its value? 1
44. Determine whether $\lim _{x \rightarrow 0} \frac{|x|}{x}$ exists. If it exists, what is its value? does not exist
45. (a) Which of the functions below satisfy $\lim _{x \rightarrow 0^{+}} f(x)=0 ? x^{2}, x^{1 / 2}, \sin (x), \tan (x)$
(b) Which of the functions below satisfy $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$? $\ln (x)$

$$
x^{2}, \quad x^{-2}, \quad x^{1 / 2}, \quad 2^{x}, \quad \ln (x), \quad \sin (x), \quad \cos (x), \quad \tan (x)
$$

46. Does $\lim _{x \rightarrow 0} \frac{|x|-4}{|x-4|}$ exist? Yes Does $\lim _{x \rightarrow 4} \frac{|x|-4}{|x-4|}$ exist? No Draw a graph of the function for x-values between -5 and 5 .
At $x=0, f=\frac{0-4}{4}=-1$. At $x=4$ the function is not defined. There are three regions to consider:

- $x>4$ (in which $|x|=x$ and $|x-4|=x-4$),
- $0<x<4$ (in which $|x|=x$ but $|x-4|=4-x$),
- $x<0$ (in which $|x|=-x$ and $|x-4|=4-x$)

In fact, we can write this as a piecewise function:

$$
\frac{|x|-4}{|x-4|}=\left\{\begin{array}{ll}
\frac{-x-4}{4-x} & \text { if } x<0 \\
\frac{x-4}{4-x} & \text { if } 0 \leq x<4 \\
\frac{-4}{x-4} & \text { if } x>4
\end{array}= \begin{cases}\frac{x+4}{x-4} & \text { if } x<0 \\
-1 & \text { if } 0 \leq x<4 \\
1 & \text { if } x>4\end{cases}\right.
$$

47. Using the function $g(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq-2 \\ x & \text { if }-2<x<2, \\ 4 & \text { if } x=2 \\ 3^{-x} & \text { if } x>2\end{array}\right.$ calculate the following:
(a) $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} x^{2}=+\infty$, or you can say it does not exist
(b) $\lim _{x \rightarrow(-2)^{-}} g(x)=\lim _{x \rightarrow-2^{-}} x^{2}=4$
(c) $\lim _{x \rightarrow(-2)^{+}} g(x)=\lim _{x \rightarrow-2^{+}} x=-2$
(d) $\lim _{x \rightarrow-2} g(x)$ does not exist because $4 \neq-2$
(e) $\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}} x=2$
(f) $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} 3^{-x}=0$
48. Calculate $\lim _{t \rightarrow 8} \frac{t+4+t^{1 / 3}}{t^{2}-8 t+7}$. Just plug in $t=8!\frac{8+4+2}{64-64+7}=\frac{14}{7}=2$.
49. Calculate $\lim _{t \rightarrow-3} \frac{\sqrt{2 t+22}-4}{t+3}$.

$$
\begin{aligned}
\lim _{t \rightarrow-3} \frac{\sqrt{2 t+22}-4}{t+3} & =\lim _{t \rightarrow-3} \frac{(\sqrt{2 t+22}-4)}{(t+3)} \frac{(\sqrt{2 t+22}+4)}{(\sqrt{2 t+22}+4)}=\lim _{t \rightarrow-3} \frac{2 t+22-16}{(t+3)(\sqrt{2 t+22}+4)} \\
& =\lim _{t \rightarrow-3} \frac{2(t+3)}{(t+3)(\sqrt{2 t+22}+4)}=\lim _{t \rightarrow-3} \frac{2}{\sqrt{2 t+22}+4}=\frac{2}{8}=\frac{1}{4}
\end{aligned}
$$

50. (a) Expand $(\sqrt{h+1}-1)(\sqrt{h+1}+1)$ and then simplify as much as possible.

$$
(\sqrt{h+1}-1)(\sqrt{h+1}+1)=(h+1)^{2}-\sqrt{h+1}-\sqrt{h+1}-1=h
$$

(b) Calculate $\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h}$.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h} \cdot \frac{\sqrt{h+1}+1}{\sqrt{h+1}+1}=\lim _{h \rightarrow 0} \frac{h}{h \sqrt{h+1}+h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{h+1}+1}=\frac{1}{2}
$$

51. Find all value(s) of p for which $\lim _{x \rightarrow 8} f(x)$ exists if

$$
f(x)=\left\{\begin{array}{ll}
3 x+p & \text { if } x \leq 8 \\
2 x-5 & \text { if } x>8 .
\end{array} p p=-13\right.
$$

52. (a) Find $\lim _{x \rightarrow 0} \frac{(5+x)^{3}-125}{x}=75$
(b) Find $\lim _{h \rightarrow 0} \frac{(5+h)^{3}-125}{h}=75$
(c) Find $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$. Your answer will be a formula with x. $3 x^{2}$
53. Find $\lim _{x \rightarrow 0}(1+t x)^{1 / x}$. Your answer will be a formula with t. \square
54. For each graph $y=f(x)$ below, is $\lim _{x \rightarrow-2^{+}} f(x)=0$ true?
(a) Yes, (b) No, (c) No
(a)

(b)

(c)

55. For each graph $y=f(x)$ from Task ??, does $\lim _{x \rightarrow-2} f(x)$ exist?
(a) Yes, (b) Yes, (c) No

A function $f(x)$ is continuous at $\boldsymbol{x}=\boldsymbol{p}$ if $f(p)$ and $\lim _{x \rightarrow p} f(x)$ both exist and are equal to each other. If not, then $f(x)$ is discontinuous at $\boldsymbol{x}=\boldsymbol{p}$.

A "jump", "hole", or "vertical asymptote" in a graph $y=f(x)$ will cause $f(x)$ to be discontinuous.
56. For each graph $y=f(x)$ from Task ??, is $f(x)$ continuous at $x=2$? all "No"
57. Give the following limits:
(a) $\lim _{x \rightarrow(\pi / 4)^{-}} \tan (x)=1$
(b) $\lim _{x \rightarrow(\pi / 4)^{+}} \tan (x)=1$
(c) $\lim _{x \rightarrow(\pi / 2)^{-}} \tan (x)=+\infty$
(d) $\lim _{x \rightarrow(\pi / 2)^{+}} \tan (x)=-\infty$
58. (a) Find the vertical asymptote(s) of

$$
g(x)=\frac{1}{x^{2}+x-6} . \quad x=-3, x=2
$$

(b) Find the vertical asymptote(s) of

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+x-6} . \quad x=-3 \text { only }
$$

59. What horizontal asymptotes does the function

$$
f(x)=\frac{x}{|x|+5}
$$

have? Hint: Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x) . y=1, y=-1$
60. Match the functions with their graphs:
(a) $\frac{x}{x^{2}-1}$ (II)
(b) $\frac{1}{x^{2}-1}$ (I)
(c) $\frac{x+1}{x^{2}-1}$ (IV)
(d) $\frac{x^{2}}{x^{2}-1}$ (III)
(I)
(II)

61. Calculate $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$ using the Squeeze Theorem for functions.

$$
\begin{aligned}
-1 \leq \cos (1 / x) & \leq 1 \\
-x^{2} \leq x^{2} \cos (1 / x) & \leq x^{2} \\
\lim _{x \rightarrow 0}-x^{2} \leq \lim _{x \rightarrow 0} x^{2} \cos (1 / x) & \leq \lim _{x \rightarrow 0} x^{2} \\
0 \leq \lim _{x \rightarrow 0} x^{2} \cos (1 / x) & \leq 0 \\
x^{2} \cos (1 / x) & =0
\end{aligned}
$$

62. If $f(x)$ is a function for which

$$
24 x-41 \leq f(x) \leq 4 x^{2}-5
$$

for all x, what is $\lim _{x \rightarrow 3} f(x)$?
$\lim _{x \rightarrow 3}(24 x-41)=31$ and $\lim _{x \rightarrow 3}\left(4 x^{2}-5\right)=31$, so the Squeeze Theorem guarantees that $\lim _{x \rightarrow 3} f(x)=31$.
63. List all points where the function graphed below is discontinuous.

$x=1, x=4, x=6$ The function is continuous at $x=3$.
64. Give an example of a function that is discontinuous at infinitely many points.

There are many examples. Here are two:

- $\tan (x)$ is discontinuous (in fact, undefined) at all $x=\frac{ \pm \pi}{2}+2 \pi n$ for integer n.
- The "floor" function $\lfloor x\rfloor$ is discontinuous at every integer $x=n$.
iv65. Give an example of a function that is discontinuous at every point.
The "Dirichlet function" is a famous (well, famous within mathematics) example: $f(x)= \begin{cases}1 & \text { if } x \text { is rational, } \\ 0 & \text { if } x \text { is irrational. }\end{cases}$

66. For what value(s) of p is the function

$$
f(x)= \begin{cases}x^{3}+5 & \text { if } x<-2 \\ x+p & \text { if } x \geq-2\end{cases}
$$

continuous?
$\lim _{x \rightarrow(-2)^{-}} f(x)=(-2)^{3}+5=-3$, and $\lim _{x \rightarrow(-2)^{+}} f(x)=(-2)+p$. If f is continuous then we need $-3=-2+p$, which means $p=-1$.
67. Which of the following functions has a hole at $x=8$? (C)
(B) $\frac{x^{2}-8 x-9}{x^{2}+8 x+7}$ hole at $x=-1$
(A) $\frac{x^{2}-8 x-9}{x^{2}-7 x-8}$ asympt. at $x=8$
(C) $\frac{x^{2}-9 x+8}{x^{2}-7 x-8}$
68. Is $\frac{5 x^{2}+1}{x^{2}-1}$ continuous? no at $x=-1$ and at $x=1$ Is $\frac{5 x^{2}+1}{x^{2}+1}$? yes
69. Without graphing, determine which one of the three equations below has a solution with $0 \leq x \leq 3$.
(A) $x^{2}=4^{x}$,
(B) $x^{3}=5^{x}$,
(C) $x^{5}=6^{x}$.
(C) because the function $f(x)=x^{5}-6^{x}$ has $f(0)=-1$ and $f(3)=27$. Since $-1<0<27$, by the Intermediate Value Theorem, there must exist an x in $[0,3]$ such that $f(x)=0$.
70. Let $f(x)=\frac{13 x-77}{x-5}$.
(a) $f(4)=25$ and $f(11)=11$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[4,11]$?
No because f is discontinuous at $x=5$.
(b) $f(6)=1$ and $f(11)=11$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[6,11]$?
Yes because f is continuous on $[6,11]$. (In fact $f(9)=10$, though the task does not ask for this.)
(c) $f(6)=1$ and $f(8)=9$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[6,8]$?
No because 10 is not in the y-interval $[f(6), f(8)]=[1,9]$.
71. Label each of the following expressions as "a sum", "a difference", "a product", "a quotient", or "a composition".
(a) $x^{2}+7$ sum or composition
(b) $(x+7)^{2}$ composition or product
(c) $\sin (x+7)$ composition
(d) $\frac{(x-1)^{3}}{e^{x}}-\frac{1}{x+8}$ difference
(e) $\frac{5 \sin (2 x)}{e^{(\sin (x))^{3}}}$ quotient
(f) $\sqrt{\frac{1}{x}+\frac{1}{x^{2}}}$ composition
(g) $\sin (\sqrt{x})+\sqrt[3]{\sin (x)}$ sum
72. Give the composition $f \circ g$ for the functions $f(x)=e^{x}$ and $g(x)=8 x-3$.

Also give $g \circ f .8 e^{x}-3$
$\mathcal{Z} 73$. Use the definition of a limit with ε and δ to show that the limit of

$$
f(x)=4 x-3
$$

as x approaches 2 is equal to 5 .
As a reminder, starred A tasks are ones that I (Adam) believe are beyond the level of an introductory calculus class.
Let $\varepsilon>0$ be any positive value. We need to find some $\delta>0$ such that

$$
\text { If } 0<|x-2|<\delta \text { then }|(4 x-3)-5|<\varepsilon
$$

Let $\delta=\frac{\varepsilon}{4}$. Because $\varepsilon>0$, we have $\delta>0$ also. If $|x-2|<\delta$ then

$$
\begin{array}{rlrl}
-\delta & < & x-2 & <\delta \\
-\varepsilon / 4 & <x-2 & <\varepsilon / 4 \\
-\varepsilon & & 4 x-8 & <\varepsilon \\
-\varepsilon & <(4 x-3)-5 & <\varepsilon
\end{array}
$$

and thus $|(4 x-3)-5|<\varepsilon$.

